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Soliton evolution and radiation loss for the sine-Gordon equation
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An approximate method for describing the evolution of solitonlike initial conditions to solitons for the
sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters
in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine
ordinary differential equations governing the evolution of the pulse parameters. The pulse evolves to a steady
soliton by shedding dispersive radiation. The effect of this radiation is determined by examining the linearized
sine-Gordon equation and loss terms are added to the variational equations derived from the averaged La-
grangian by using the momentum and energy conservation equations for the sine-Gordon equation. Solutions
of the resulting approximate equations, which include loss, are found to be in good agreement with full
numerical solutions of the sine-Gordon equati@1063-651%99)10508-7

PACS numbgs): 41.20.Jb, 52.35.Mw, 02.60.L;j

[. INTRODUCTION In the present paper an alternative to using the inverse

scattering method to describe the evolution of an initial con-

The sine-Gordon equation dition for the sine-Gordon equation into solitons plus disper-
sive radiation will be developed. This approximate method is

2u du based on using a trial function in the Lagrangian for the
— — ——+sinu=0 (1)  sine-Gordon equation. The effect of the shed dispersive ra-

at> x> diation on the evolving soliton is determined by an appropri-

ate solution of the linearized sine-Gorddklein-Gordon

is one of a number of equations describing nonlinear wavequation and the momentum and energy conservation equa-
motion, which can be solved by the inverse scatteringions for the sine-Gordon equation. A similar approach has
method[1]. This equation arises in a diverse range of areadeen found to be successful for the nonlinear Sdimger

of physics, for example, crystal dislocation thedfy, self-  equation[5], which also has an inverse scattering solution
induced transparencyl], laser physics[1], and particle [6]. Momentum and energy conservation equations have
physics[2]. A related equation, the sinh-Gordon equation,been used to derive approximate ordinary differential equa-
for which the siru term is replaced by sinly arises in black- ~ tions describing pulse evolution for the Korteweg—de Vries
hole theory in connection with Hawking radiati¢®,4]. The  [7] and Kadomtsev-PetviashvilKP) [8] equations, both of
inverse scattering solution shows that any initial conditionWhich also have inverse scattering solutipfif One advan-
(with suitably bounded derivative at infinjtyill evolve into  t29€ of using approximate methods to derive equations de-
a finite number of soliton solutions plus dispersive radiation SC"PING pulse evolution is that they can be extended to equa-

The soliton solutions of the sine-Gordon equation are tions that do not possess an inverse scattering solution, for
example, the mKdV equatiofi9] and coupled nonlinear

Schralinger equation$10].

x—Ut ; . . .
u=+4tan lex e 2 The_ Lagra_nglan m_ethod for _d_erlvmg approxm_1ate ordi-
Vi-U nary differential equations describing pulse evolution for the

sine-Gordon equation, which is developed in the present pa-
Inverse scattering gives that the solitons formed from a givemper, has similarities to that for the nonlinear Salinger
initial condition are determined by the discrete spectrum of aquation5]. This is not unexpected as the inverse scattering
linear eigenvalue problem, and so are, in principle, easilsolutions for the sine-Gordon and nonlinear Sclmger
calculated. However, the dispersive radiation shed as the inequations are simildr]. Solutions of the approximate equa-
tial condition evolves is given by the solution of a linear tions are compared with full numerical solutions of the sine-
integral equation, this solution being nontrivial. Therefore,Gordon equation and good agreement is found. An advan-
while it is straightforward to determine the final steady statetage of the approximate method developed in the present
for a given initial condition, the actual time evolution to this paper is that it can be extended to analyze pulse evolution for
steady state is difficult to determine. perturbed sine-Gordon equations that do not possess an in-

verse scattering solution, such as those arising in particle

physics[2]. Such extensions will be the subject of future

*Electronic address: noel@maths.ed.ac.uk work.
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Il. APPROXIMATE EQUATIONS 272 d2w 72 [ dw) 2 u2
In the present paper the evolution of the initial condition ™ a2 ﬁ(ﬂ) 4W2 v?+4:0'
(10)
B X—Ugt
u=4tan *exp — ” 3 d/u
O . — — =
S¢: dt(w) 0. (11)

will be considered since it represents a simple initial condi-

tion for which the calculations involved in obtaining the ap- The velocity equation shows that/w=Ug/w,. Variational
proximate equations are straightforward. The relation beequation(10) for the widthw then has the fixed point
tween this initial condition and soliton solutid®) is easily

seen. 1
The sine-Gordon equatiofl) has the Lagrangian W= \/T (12
0
1+ —
L=2u?—2u2+cosu. (4) Wo)
An application of Noher's theorenj11] using this Lagrang- >° that the fixed point for the velocity is
ian shows that sine-Gordon equati@) has the momentum U
i i 0
conservation equation U= . (13)
/ Uog
d a1, 1, 0 . Wo\/1+ W_)
E(utux)—g Eut+§ux+cosu = (5) 0

This fixed point is soliton solutiof2). However, since varia-
and the energy conservation equation tional equationg10) and (11) do not contain any damping
terms, the pulse cannot evolve to this steady state. The ex-
d tension of these equations to include the effect of the disper-
- 5(utux)=0. (6) sive radiation shed as the pulse evolves is considered in the
next section.
To obtain approximate equations describing the evolution Momentum and energy conservation equatitisand (6)
of initial condition (3) we assume the form can al_so b_e averaged to give the momentum and energy con-
servation integrals

a1, 1,
E Eut+§ux—cosu

X—S(t))

= -1 _ - >
u=4tan exr{ w(D)

(@) %f u;u, dx=0 (14
for the time evolution ofi. This type of approximate solution g4
is widely used in field theory, where it is called a collective
coordinates solution(a standard reference is Rajaraman d(=(1, 1,
[12]). It can be seen that this approximate solution is a vary- af <§Ut +§UX_COSU) dx=0, (19
ing solitonlike pulse, which can evolve from initial condition
(3) to steady soliton(2). The velocity of the pulse i$J
=¢’'(t). From initial condition(3) it can be seen that(0)
=wgy andU(0)=U,. The derivativeu, of assumed fornt7)
has a pulselike shape with amplitude — 2/w.

The approximate equations for the pulse parametéts

—o0

respectively. Substituting trial solutiof) into the momen-
tum conservation integral yields variational equatidr),
while the energy conservation integral yields the energy con-
servation equation

and U(t) are obtained from variations of the averaged La- . 5
grangian i(77—\,L+ﬂJri+4w =0 (16)
dt\3 w  w w '
L’:ﬁ L dx. (8)  which can be reduced to variational equatic0). It is,

therefore, apparent that the variational equations yield the
equations for momentum and energy conservation. Energy
conservation equatiofl6) can be integrated to give the ex-
act solution for the width of the pulse as

By substituting approximate solutidi) into Lagrangian4)
it is found that the averaged Lagrangian is

m2w? UuU? 4 2114w 2 14w
= % Yo ) W Wo(Ug+ 1+ wg) N Wo(Ug—1+wg)
wooowow 2(wh+Up) 2(w+U3)
Taking variations of this averaged Lagrangian with respect 2.3 US
to w and ¢ gives the ordinary differential equations govern- xecog —\/1+—t]. a7
ing the pulse parameters as ™ Wo
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05 - - - - - so thatu,(0,t) =g(t). Since the dispersive radiation spreads
ast increases, this is a valid approximation for large time.
The effect of the dispersive radiation on the evolution of the
pulse can now be found from this solution and the momen-
tum and energy conservation equations. Differentiating lin-
ear solution(19) gives

u=- [ 3P0 (t- s

t o7
_ _ 2_ 2 _
=—g(t X)-i—fX 7_2_)(2\]1(\/7 x9)g(t—7n)dr,
2565 %0 20 0 20 20 60

(20

X

FIG. 1. Full numerical solution fou, att=>50 for initial condi- t
tion (3) with wy=0.6 andU,=0. U,=g(t—x)— f
X

X
— L7 xg(t=ndr,
e

The widthw of the pulse and the amplitudge= — 2/w of the (21
derivativeu, then oscillate about a mean value. Similar os- ) . o

cillatory behavior also occurs for evolving pulses for the©n noting thag(0)=0 as there is no radiation initially.
nonlinear Schidinger equatioi5]. Full numerical solutions _ 1h€ linearized forms of momentum and energy conserva-
of the sine-Gordon equation show that the pulse oscillates tBon €quationss) and (6) for the sine-Gordon equation are

a steady stat¢see Fig. 2o)]. To enable the approximate

solution to approach a steady state the effect of the dispersive J 19 5, 2 5

T ; ; — ———(uftui—u9)=
radiation shed as the pulse evolves must be included, this at(utuX) 2 ax(ut U= u?)=0 (22
being the subject of the next section.

and
Ill. DISPERSIVE RADIATION
. . . . 19 J
Figure 1 shows the full numerical solution of sine-Gordon > ﬁ(ut2+ uZ+u?)— &(UtUX)ZO, (23

equation(1) for u, att=>50 for the initial condition(3) with
wo=0.6 andUy=0. It can be seen that dispersive radiation ) ) . ] .
of small amplitude is shed by the evolving pulse. Now far'espectively. Integrating linearized energy conservation
ahead of the pulsaj—0 and far behind the pulse— 2. equation(23) from the pulsex=0 to the frontx=t gives the
Therefore, the shed dispersive radiation is governed by th@nergy lost to the radiation propagating inte0 as
linearized sine-Gordon equation 41
t t
20 2u 3is f0<u$+u§+u2>dx=gz<t)—g<t) foal<r>g<t—r>dr.

F—eru:O, (18) (24)

which is the Klein-Gordon equatio[ﬂ_s]_ This equation is USing the Symmetry of the solution for the radiation, the total
hyperbolic with characteristic velocities 1. The resulting energy flux from the pulse to the dispersive radiation is,
wave fronts atx= *+t can be clearly seen in Fig. 1. therefore,

Let us consider the case of a pulse with zero velotity
=0 first. It can be seen from Fig. 1 that the radiation in the o2 t B
vicinity of the pulseu, is flat. This is to be expected as the FTa (t)+2g(t)JoJ1(7')g(t ndr. (29
group velocitycy=k/ 1+ k? for the Klein-Gordon equation
shows that waves of low wave number have low group Vetjere H refers to the energy density in energy conservation
locity. The radiation in the vicinity of the pulse can then be gquation (6). To complete the modification of variational

approximated byi=g(t)x, whereg is to be determined. On  equations(10) and (11) to include loss to dispersive radia-
noting that there is no radiation &t 0, Klein-Gordon equa-  tjon, the parameteg is now related to the pulse width.

tion (18) can be solved using Laplace transforms to give Let us expand the energy denskyabout the fixed point
. w=w; (U;=0 in the case under consideratioBettingw
U= _f Jol /rz—xz)g(t— Adr (19) =W+ Wy, where|w,| is small, the energy density in energy
X equation(6) becomes
for x=0 and a symmetric solution for<0. HereJy(x) is 8 m2(w)? w?
the Bessel function of order zero. In obtaining this solution H=H:;+sH= W—+ 3 Wl +4—;. (26)
f W;

the edge of the radiation has been seta0 for simplicity, f
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Using exact solutior{17) w, can be replaced by} to give Comparing expressiof83) for the energy in the radiation
the perturbed Hamiltonian as to expressiori27) for the perturbed Hamiltonian of the pulse
near the fixed point, it can be seen that we can equate
2 2 2 2
7 (W) 77

— - 12 ' ’
=3 W, + 153 We(W7)“. (27 (W) w2 (w')?

2:— A~ —
3wyt 3 wt (34
Note that in replacingv, by w7, the term
and
i U—%'i‘i'FW_i (28) "2
m\Wo W 0 W p W T WYT W

has been ignored since only the derivative of the Hamil-

tonian matters in the calculation of the energy loss due to th&@hese expressions fgrandg’ do not quite agree, but are in
dispersive radiation. The relation betwesrandg will now  approximate agreement as/\6=1.28...~1 (note that

be obtained by equatingH to the energy shed to the disper- w;=1 for U,=0). A similar slight disagreement in the dis-
sive radiation. From linearized energy conservation equatiopersive radiation term was found for the nonlinear Sehro
(23) the energy in the radiation shed to the right of the pulsedinger equation5].

is given by The preceding derivation of the energy lost to the disper-
sive radiation was for the casgé=0. WhenU #0 the radia-
tion is given by the solution of a moving boundary problem
for Klein-Gordon equatiori18), the moving boundary being
at the pulse positior= ¢. This moving boundary problem is
with the radiationu given by Laplace transform solution difficult to solve. However ifU #0 were a constant, then by
(19). The integrals in energy expressi@2) are difficult to ~ the Galilean invariance of the sine-Gordon equation the en-
evaluate using this Laplace transform solution, so approxi€’dy l0ss to the radiation would still be given by EgD). It
mations for large time will now be made. These large timecan be further shown from momentum equati@g) for the
approximations are consistent with expanding the energflein-Gordon equation that foU taken as a constant, the

1t
Ef (u2+uZ+u?)dx (29)
0

about the fixed point. momentum loss to the radiation is given by
For large time, solutiori19) for u(0t) is
dP d ft g
23 a7 T At UiUxdX
u(o,t)~—f Jo(Ng(t—r)dr. (30) e dt)-.
0

t
— 20| g®-g(t) foJl<T>g<t—T>dr. (36

If g were a constant, this could be further reduced to

* If U were slowly varying, then this expression would give
u(O,t)~—ng Jo(r)d7=—g, (8D the momentum loss to the dispersive radiation. It will be
found in the next section from full numerical solutions of the
sine-Gordon equation that for large tinké does not vary
greatly. Therefore, we shall use this expression for the mo-
mentum loss whet is not constant.

Adding energy-loss expressig5) to variational equa-
tion (10) for w and momentum-loss expressi(86) to varia-
tional equatior(11) for U, we finally have that the equations,
including momentum and energy loss, governing the evolu-
tion of the pulse are

on noting that the integral from=0 to x=o of Jy(X) is 1
[14]. Now it will be found thatg is a slowly decaying oscil-
latory function oft. Therefore, Eq(31) is a valid approxi-
mation foru(0,t) for larget if g is taken as the slowly vary-
ing mean value of these oscillations. In a similar manner
expression20) for u;(0,t) can be approximated for large

by
u(0t)=-g’. (32

Integral (29) for the energy in the radiation shed to the right 3w 42 3w?
of the pulse is now approximated by the trapezoidal rule

using Eq.(21) for u,(0,t), Eq. (31 for u(0,t) and Eq.(32) 272 dw 272 [t w'(7)
for uy(0}t), noting thatu, u,, andu, are all zero at the front —a- a0t ——| Ji(t—7)—=dr
x=t. Symmetry then finally gives that the total energy in the dwt dt - 3\wtlo NVTW(T)
dispersive radiation is given by the approximation

(37)
and

_E ! 2 2 2 N2 1 12
He=3 | (urrucrudx=gittog™t (33 d(U) 7Udw| 1 dw 1 [t w'(7)
dtlw/ 12 dt ME__,/\,VtJOJl(t_T)—,/TW(T)dT
for larget. (38
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FIG. 2. Amplitudea of u, as a function of for initial condition FIG. 3. Pulse evolution for initial conditiofB) with w,=0.9
(3). Full numerical solution, —; solution of approximate equations,andUo=0.2. Full numerical solution, —; solution of approximate
— — — .(3) Wy=0.9 andU,=0 and(b) wy=0.6 andU,=0. equations, — — — (&) Amplitudea of u, and(b) position¢ of pulse

minus position of pulse with velocity .
In the next section solutions of these approximate equations
will be compared with full numerical solutions of sine- method does not yield the phase of the solution. The decay
Gordon equation(1). The approximate equations were rate of the approximate solution is in excellent agreement
solved numerically using a fourth-order Runge-Kutta schemgvith the numerical decay rate for large time. The agreement
with the integrals on the right-hand side of the equationgor small times is not so good, but this is expected from the
evaluated using the trapezoidal rule. derivation of the radiation loss for the approximate equa-
tions. Since the radiation loss terms were derived under the
assumption thalt) =0, the good agreement shown in the fig-
ures is to be expected.

Sine-Gordon equatiofil) was solved numerically using Figure 3 shows amplitude and position comparisons for
second-order centered differences in space and time. Thike initial conditionswy=0.9 andU,=0.2. It can again be
scheme was tested by propagating soliton solu@pwhich  seen that there is good agreement between the approximate
was found to propagate without change of form to withinand numerical solutions. The period of the approximate so-
less than a percent error. The solutions obtained from thitution is slightly smaller than the numerical period and the
numerical scheme will now be compared with numerical so-decay rate is slightly larger. The agreement between the peak
lutions of approximate equatiori87) and(38). position ¢ as given by the two solutions is also good. Good

In Fig. 2 the amplitudex of u, as given by the solution of agreement between the approximate and numerical solutions
the approximate equations and by the full numerical solutiorcontinues up tdJ,~0.4. Figure 4 shows amplitude and po-
of the sine-Gordon equation is shown for the initial condi-sition comparisons for the initial conditions;,=0.8 and
tionswy=0.9 andwy= 0.6 withU,=0, so thatU=0. Figure  Uy=0.5. While the agreement between the positions is good,
2(a) shows the amplitude for the initial condition near the the agreement between the amplitudes is only fair. The ra-
soliton solution and Fig. ®) shows the amplitude for the diation loss terms in the approximate equations were derived
initial condition far from the steady soliton. It can be seenunder the assumption thdtwas a constant. It is clear that as
that the agreement between the two solutions is excellent fdd increases this assumption becomes less valid. It can be
both initial conditions, with the major disagreement being aseen from Fig. @) that the amplitude oscillations as given
constant phase difference. It is noted that the approximatby the approximate equations have an anharmonic compo-

IV. COMPARISON WITH NUMERICAL SOLUTIONS
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FIG. 4. Pulse evolution for initial conditiof3) with wy=0.8

andU,=0.5. Full numerical solution, —; solution of approximate (40). Full numerical solution,

equations, — — —(a) Amplitude a of u, and(b) position¢ of pulse

minus position of pulse with velocity .

nent. This is due to a mismatch between the period§;of
andw in the integral term of the radiation damping terms in

t

FIG. 5. Pulse evolution using approximate equati@®@ and
—; solution of approximate equa-
tions, — — — .(@) Amplitude a of u, for wy=0.8 andU,=0.5 and
(b) amplitudea of u, for wy=0.5 andU,=0.8.

d U_wZUdW 1dw 1
dtlw/ 12 dt

wtdt it

wt dt

the approximate equations. For large J;(x) has period

27~6.28 ... [14]. For U=0 exact solution(17) has pe- t w'(7)

riod 72/\/3~5.698, so thatl; andw have nearly the same X J' J1(V1+(Ug/wg)? (t=7))—=—=d1|.
period. However, a$J, increases it can be seen from exact 0 ™w(7)
solution (17) that the period ofv becomes shorter than the (40)

period of J. This suggests that to correct the anharmonic

behavior the argument df, should be adjusted to make the Since the radiation loss terms were derived under the as-
periods ofJ; and w similar for larget. Upon doing this sumption thatU,=0, these equations are as justified as Egs.
approximate equation@7) and (38) become (37) and (38) for Uy#0.

Figure 5 shows comparisons between the full numerical
solution of the sine-Gordon equation and the solution of fre-
quency adjusted equatioli39) and (40) for the amplitudea
of u,. It can be seen that the anharmonic component of the
approximate amplitude oscillation has now disappeared. Fig-
ure Ha) shows the comparison for the initial parameter val-
ueswy=0.8 andU,=0.5, as for Fig. 49). The comparison
between the numerical and approximate solutions is now rea-
sonable, with the damping of the approximate solution being

uz 4
+4———+4

w2 w2

d®w 72 (dw)2

277de+ 22 [t
3wt dt ' 3wtlo

w'(7) slightly stronger than that of the numerical solution and the
X 3y (J1+ 2 (t- gntly strong . - ume
J1(V1+ (Uo/wo)™ (t T))‘/TW( o dr (39 period of the approximate solution being somewhat shorter.

Figure 8b) shows the same comparison for the initial values
wo=0.5 andU,=0.8. The period of the approximate solu-

and tion is now significantly shorter than the numerical period
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and the decay significantly stronger. However, the agreemeilispersive radiation was found by using a suitable solution of
between the final steady states is good. the linearized sine-Gordon equati@he Klein-Gordon equa-
tion) in conjunction with the momentum and energy conser-
vation equations for the sine-Gordon equation. While the ex-
V. CONCLUSIONS act inverse scattering solution of the sine-Gordon equation
provides this information in principle, in practice it is diffi-
The evolution of solitonlike initial conditions to soliton cult to explicitly obtain it. Furthermore, the approximate
solutions for the sine-Gordon equation has been examined. thethod outlined in the present paper can be extended to
has been shown that in order to obtain good agreement witsine-Gordon-type equations for which there are no inverse
full numerical solutions, the effect of the dispersive radiationscattering solutions. These extensions will be the subject of
shed as the pulse evolves must be included. The effect of thisirther work.
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