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Soliton evolution and radiation loss for the sine-Gordon equation
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An approximate method for describing the evolution of solitonlike initial conditions to solitons for the
sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters
in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine
ordinary differential equations governing the evolution of the pulse parameters. The pulse evolves to a steady
soliton by shedding dispersive radiation. The effect of this radiation is determined by examining the linearized
sine-Gordon equation and loss terms are added to the variational equations derived from the averaged La-
grangian by using the momentum and energy conservation equations for the sine-Gordon equation. Solutions
of the resulting approximate equations, which include loss, are found to be in good agreement with full
numerical solutions of the sine-Gordon equation.@S1063-651X~99!10508-7#

PACS number~s!: 41.20.Jb, 52.35.Mw, 02.60.Lj
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I. INTRODUCTION

The sine-Gordon equation

]2u

]t2
2

]2u

]x2
1sinu50 ~1!

is one of a number of equations describing nonlinear w
motion, which can be solved by the inverse scatter
method@1#. This equation arises in a diverse range of ar
of physics, for example, crystal dislocation theory@1#, self-
induced transparency@1#, laser physics@1#, and particle
physics @2#. A related equation, the sinh-Gordon equatio
for which the sinu term is replaced by sinhu, arises in black-
hole theory in connection with Hawking radiation@3,4#. The
inverse scattering solution shows that any initial condit
~with suitably bounded derivative at infinity! will evolve into
a finite number of soliton solutions plus dispersive radiati
The soliton solutions of the sine-Gordon equation are

u564 tan21expS 6
x2Ut

A12U2D . ~2!

Inverse scattering gives that the solitons formed from a gi
initial condition are determined by the discrete spectrum o
linear eigenvalue problem, and so are, in principle, ea
calculated. However, the dispersive radiation shed as the
tial condition evolves is given by the solution of a line
integral equation, this solution being nontrivial. Therefo
while it is straightforward to determine the final steady st
for a given initial condition, the actual time evolution to th
steady state is difficult to determine.
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In the present paper an alternative to using the inve
scattering method to describe the evolution of an initial co
dition for the sine-Gordon equation into solitons plus disp
sive radiation will be developed. This approximate method
based on using a trial function in the Lagrangian for t
sine-Gordon equation. The effect of the shed dispersive
diation on the evolving soliton is determined by an approp
ate solution of the linearized sine-Gordon~Klein-Gordon!
equation and the momentum and energy conservation e
tions for the sine-Gordon equation. A similar approach h
been found to be successful for the nonlinear Schro¨dinger
equation@5#, which also has an inverse scattering soluti
@6#. Momentum and energy conservation equations h
been used to derive approximate ordinary differential eq
tions describing pulse evolution for the Korteweg–de Vr
@7# and Kadomtsev-Petviashvili~KP! @8# equations, both of
which also have inverse scattering solutions@6#. One advan-
tage of using approximate methods to derive equations
scribing pulse evolution is that they can be extended to eq
tions that do not possess an inverse scattering solution
example, the mKdV equation@9# and coupled nonlinea
Schrödinger equations@10#.

The Lagrangian method for deriving approximate or
nary differential equations describing pulse evolution for t
sine-Gordon equation, which is developed in the present
per, has similarities to that for the nonlinear Schro¨dinger
equation@5#. This is not unexpected as the inverse scatter
solutions for the sine-Gordon and nonlinear Schro¨dinger
equations are similar@1#. Solutions of the approximate equa
tions are compared with full numerical solutions of the sin
Gordon equation and good agreement is found. An adv
tage of the approximate method developed in the pres
paper is that it can be extended to analyze pulse evolution
perturbed sine-Gordon equations that do not possess a
verse scattering solution, such as those arising in part
physics @2#. Such extensions will be the subject of futu
work.
2330 © 1999 The American Physical Society
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II. APPROXIMATE EQUATIONS

In the present paper the evolution of the initial conditi

u54 tan21expS 2
x2U0t

w0
D ~3!

will be considered since it represents a simple initial con
tion for which the calculations involved in obtaining the a
proximate equations are straightforward. The relation
tween this initial condition and soliton solution~2! is easily
seen.

The sine-Gordon equation~1! has the Lagrangian

L5 1
2 ut

22 1
2 ux

21cosu. ~4!

An application of No¨ther’s theorem@11# using this Lagrang-
ian shows that sine-Gordon equation~1! has the momentum
conservation equation

]

]t
~utux!2

]

]x S 1

2
ut

21
1

2
ux

21cosuD50 ~5!

and the energy conservation equation

]

]t S 1

2
ut

21
1

2
ux

22cosuD2
]

]x
~utux!50. ~6!

To obtain approximate equations describing the evolut
of initial condition ~3! we assume the form

u54 tan21expS 2
x2j~ t !

w~ t ! D ~7!

for the time evolution ofu. This type of approximate solution
is widely used in field theory, where it is called a collecti
coordinates solution~a standard reference is Rajaram
@12#!. It can be seen that this approximate solution is a va
ing solitonlike pulse, which can evolve from initial conditio
~3! to steady soliton~2!. The velocity of the pulse isU
5j8(t). From initial condition~3! it can be seen thatw(0)
5w0 andU(0)5U0. The derivativeux of assumed form~7!
has a pulselike shape with amplitudea522/w.

The approximate equations for the pulse parametersw(t)
and U(t) are obtained from variations of the averaged L
grangian

L5E
2`

`

L dx. ~8!

By substituting approximate solution~7! into Lagrangian~4!
it is found that the averaged Lagrangian is

L5
p2

3

w82

w
14

U2

w
2

4

w
24w. ~9!

Taking variations of this averaged Lagrangian with resp
to w andj gives the ordinary differential equations gover
ing the pulse parameters as
i-

-

n

-

-

t

dw:
2p2

3w

d2w

dt2
2

p2

3w2 S dw

dt D
2

14
U2

w2
2

4

w2
1450,

~10!

dj:
d

dt S U

wD50. ~11!

The velocity equation shows thatU/w5U0 /w0. Variational
equation~10! for the widthw then has the fixed point

wf5
1

A11S U0

w0
D 2

, ~12!

so that the fixed point for the velocity is

U f5
U0

w0A11S U0

w0
D 2

. ~13!

This fixed point is soliton solution~2!. However, since varia-
tional equations~10! and ~11! do not contain any damping
terms, the pulse cannot evolve to this steady state. The
tension of these equations to include the effect of the disp
sive radiation shed as the pulse evolves is considered in
next section.

Momentum and energy conservation equations~5! and~6!
can also be averaged to give the momentum and energy
servation integrals

d

dtE2`

`

utux dx50 ~14!

and

d

dtE2`

` S 1

2
ut

21
1

2
ux

22cosuDdx50, ~15!

respectively. Substituting trial solution~7! into the momen-
tum conservation integral yields variational equation~11!,
while the energy conservation integral yields the energy c
servation equation

d

dt
S p2

3

w82

w
1

4U2

w
1

4

w
14wD 50, ~16!

which can be reduced to variational equation~10!. It is,
therefore, apparent that the variational equations yield
equations for momentum and energy conservation. Ene
conservation equation~16! can be integrated to give the ex
act solution for the width of the pulse as

w5
w0~U0

2111w0
2!

2~w0
21U0

2!
1

w0~U0
2211w0

2!

2~w0
21U0

2!

3cosS 2A3

p
A11

U0
2

w0
2

t D . ~17!



s
he

s
e
s
th

on

on
fa

th

he
e

ve
be

on

ds
e.
he
en-
lin-

va-

ion

tal
is,

ion
l
-

y

2332 PRE 60NOEL F. SMYTH AND ANNETTE L. WORTHY
The widthw of the pulse and the amplitudea522/w of the
derivativeux then oscillate about a mean value. Similar o
cillatory behavior also occurs for evolving pulses for t
nonlinear Schro¨dinger equation@5#. Full numerical solutions
of the sine-Gordon equation show that the pulse oscillate
a steady state@see Fig. 2~b!#. To enable the approximat
solution to approach a steady state the effect of the disper
radiation shed as the pulse evolves must be included,
being the subject of the next section.

III. DISPERSIVE RADIATION

Figure 1 shows the full numerical solution of sine-Gord
equation~1! for ux at t550 for the initial condition~3! with
w050.6 andU050. It can be seen that dispersive radiati
of small amplitude is shed by the evolving pulse. Now
ahead of the pulse,u˜0 and far behind the pulse,u˜2p.
Therefore, the shed dispersive radiation is governed by
linearized sine-Gordon equation

]2u

]t2
2

]2u

]x2
1u50, ~18!

which is the Klein-Gordon equation@13#. This equation is
hyperbolic with characteristic velocities61. The resulting
wave fronts atx56t can be clearly seen in Fig. 1.

Let us consider the case of a pulse with zero velocityU
50 first. It can be seen from Fig. 1 that the radiation in t
vicinity of the pulseux is flat. This is to be expected as th
group velocitycg5k/A11k2 for the Klein-Gordon equation
shows that waves of low wave number have low group
locity. The radiation in the vicinity of the pulse can then
approximated byu5g(t)x, whereg is to be determined. On
noting that there is no radiation att50, Klein-Gordon equa-
tion ~18! can be solved using Laplace transforms to give

u52E
x

t

J0~At22x2!g~ t2t!dt ~19!

for x>0 and a symmetric solution forx<0. HereJ0(x) is
the Bessel function of order zero. In obtaining this soluti
the edge of the radiation has been set atx50 for simplicity,

FIG. 1. Full numerical solution forux at t550 for initial condi-
tion ~3! with w050.6 andU050.
-
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so thatux(0,t)5g(t). Since the dispersive radiation sprea
as t increases, this is a valid approximation for large tim
The effect of the dispersive radiation on the evolution of t
pulse can now be found from this solution and the mom
tum and energy conservation equations. Differentiating
ear solution~19! gives

ut52E
x

t

J0~At22x2!g8~ t2t!dt

52g~ t2x!1E
x

t t

At22x2
J1~At22x2!g~ t2t!dt,

~20!

ux5g~ t2x!2E
x

t x

At22x2
J1~At22x2!g~ t2t!dt,

~21!

on noting thatg(0)50 as there is no radiation initially.
The linearized forms of momentum and energy conser

tion equations~5! and ~6! for the sine-Gordon equation are

]

]t
~utux!2

1

2

]

]x
~ut

21ux
22u2!50 ~22!

and

1

2

]

]t
~ut

21ux
21u2!2

]

]x
~utux!50, ~23!

respectively. Integrating linearized energy conservat
equation~23! from the pulsex50 to the frontx5t gives the
energy lost to the radiation propagating intox.0 as

d

dt

1

2E0

t

~ut
21ux

21u2!dx5g2~ t !2g~ t !E
0

t

J1~t!g~ t2t!dt.

~24!

Using the symmetry of the solution for the radiation, the to
energy flux from the pulse to the dispersive radiation
therefore,

dH

dt
522g2~ t !12g~ t !E

0

t

J1~t!g~ t2t!dt. ~25!

Here H refers to the energy density in energy conservat
equation ~6!. To complete the modification of variationa
equations~10! and ~11! to include loss to dispersive radia
tion, the parameterg is now related to the pulse widthw.

Let us expand the energy densityH about the fixed point
w5wf (U f50 in the case under consideration!. Settingw
5wf1w1, whereuw1u is small, the energy density in energ
equation~6! becomes

H5H f1dH5
8

wf
1

p2

3

~w18!2

wf
14

w1
2

wf
3

. ~26!
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Using exact solution~17! w1 can be replaced byw19 to give
the perturbed Hamiltonian as

dH5
p2

3

~w18!2

wf
1

p2

12

p2

3
wf~w19!2. ~27!

Note that in replacingw1 by w19 , the term

6

p2 S U0
2

w0
1

1

w0
1w02

2

wf
D ~28!

has been ignored since only the derivative of the Ham
tonian matters in the calculation of the energy loss due to
dispersive radiation. The relation betweenw andg will now
be obtained by equatingdH to the energy shed to the dispe
sive radiation. From linearized energy conservation equa
~23! the energy in the radiation shed to the right of the pu
is given by

1

2E0

t

~ut
21ux

21u2!dx ~29!

with the radiationu given by Laplace transform solutio
~19!. The integrals in energy expression~29! are difficult to
evaluate using this Laplace transform solution, so appro
mations for large time will now be made. These large tim
approximations are consistent with expanding the ene
about the fixed point.

For large time, solution~19! for u(0,t) is

u~0,t !;2E
0

`

J0~t!g~ t2t!dt. ~30!

If g were a constant, this could be further reduced to

u~0,t !;2gE
0

`

J0~t!dt52g, ~31!

on noting that the integral fromx50 to x5` of J0(x) is 1
@14#. Now it will be found thatg is a slowly decaying oscil-
latory function of t. Therefore, Eq.~31! is a valid approxi-
mation foru(0,t) for larget if g is taken as the slowly vary
ing mean value of these oscillations. In a similar mann
expression~20! for ut(0,t) can be approximated for larget
by

ut~0,t !52g8. ~32!

Integral~29! for the energy in the radiation shed to the rig
of the pulse is now approximated by the trapezoidal r
using Eq.~21! for ux(0,t), Eq. ~31! for u(0,t) and Eq.~32!
for ut(0,t), noting thatu, ux , andut are all zero at the fron
x5t. Symmetry then finally gives that the total energy in t
dispersive radiation is given by the approximation

Hr5
1

2E2t

t

~ut
21ux

21u2!dx5g2t1
1

2
g82t ~33!

for large t.
l-
e

n
e

i-
e
y

r,

e

Comparing expression~33! for the energy in the radiation
to expression~27! for the perturbed Hamiltonian of the puls
near the fixed point, it can be seen that we can equate

g25
p2

3

~w18!2

wft
;

p2

3

~w8!2

wt
~34!

and

g825
p2wf

6

p2

3

~w19!2

t
;

p2

6

p2

3

~w9!2

wt
. ~35!

These expressions forg andg8 do not quite agree, but are i
approximate agreement asp/A651.28 . . .;1 ~note that
wf51 for U050). A similar slight disagreement in the dis
persive radiation term was found for the nonlinear Sch¨-
dinger equation@5#.

The preceding derivation of the energy lost to the disp
sive radiation was for the caseU50. WhenUÞ0 the radia-
tion is given by the solution of a moving boundary proble
for Klein-Gordon equation~18!, the moving boundary being
at the pulse positionx5j. This moving boundary problem is
difficult to solve. However ifUÞ0 were a constant, then b
the Galilean invariance of the sine-Gordon equation the
ergy loss to the radiation would still be given by Eq.~25!. It
can be further shown from momentum equation~22! for the
Klein-Gordon equation that forU taken as a constant, th
momentum loss to the radiation is given by

dP

dt
5

d

dtE2t

t

utuxdx

522UFg2~ t !2g~ t !E
0

t

J1~t!g~ t2t!dtG . ~36!

If U were slowly varying, then this expression would giv
the momentum loss to the dispersive radiation. It will
found in the next section from full numerical solutions of th
sine-Gordon equation that for large timeU does not vary
greatly. Therefore, we shall use this expression for the m
mentum loss whenU is not constant.

Adding energy-loss expression~25! to variational equa-
tion ~10! for w and momentum-loss expression~36! to varia-
tional equation~11! for U, we finally have that the equations
including momentum and energy loss, governing the evo
tion of the pulse are

2p2

3w

d2w

dt2
2

p2

3w2 S dw

dt D
2

14
U2

w2
2

4

w2
14

52
2p2

3wt

dw

dt
1

2p2

3Awt
E

0

t

J1~ t2t!
w8~t!

Atw~t!
dt ~37!

and

d

dt S U

wD5
p2U

12

dw

dt F 1

wt

dw

dt
2

1

Awt
E

0

t

J1~ t2t!
w8~t!

Atw~t!
dtG .

~38!
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In the next section solutions of these approximate equat
will be compared with full numerical solutions of sine
Gordon equation~1!. The approximate equations we
solved numerically using a fourth-order Runge-Kutta sche
with the integrals on the right-hand side of the equatio
evaluated using the trapezoidal rule.

IV. COMPARISON WITH NUMERICAL SOLUTIONS

Sine-Gordon equation~1! was solved numerically using
second-order centered differences in space and time.
scheme was tested by propagating soliton solution~2!, which
was found to propagate without change of form to with
less than a percent error. The solutions obtained from
numerical scheme will now be compared with numerical
lutions of approximate equations~37! and ~38!.

In Fig. 2 the amplitudea of ux as given by the solution o
the approximate equations and by the full numerical solut
of the sine-Gordon equation is shown for the initial con
tionsw050.9 andw050.6 withU050, so thatU50. Figure
2~a! shows the amplitude for the initial condition near t
soliton solution and Fig. 2~b! shows the amplitude for the
initial condition far from the steady soliton. It can be se
that the agreement between the two solutions is excellen
both initial conditions, with the major disagreement being
constant phase difference. It is noted that the approxim

FIG. 2. Amplitudea of ux as a function oft for initial condition
~3!. Full numerical solution, —; solution of approximate equation
– – – . ~a! w050.9 andU050 and~b! w050.6 andU050.
ns

e
s

is

is
-

n
-

or
a
te

method does not yield the phase of the solution. The de
rate of the approximate solution is in excellent agreem
with the numerical decay rate for large time. The agreem
for small times is not so good, but this is expected from
derivation of the radiation loss for the approximate equ
tions. Since the radiation loss terms were derived under
assumption thatU50, the good agreement shown in the fi
ures is to be expected.

Figure 3 shows amplitude and position comparisons
the initial conditionsw050.9 andU050.2. It can again be
seen that there is good agreement between the approxi
and numerical solutions. The period of the approximate
lution is slightly smaller than the numerical period and t
decay rate is slightly larger. The agreement between the p
positionj as given by the two solutions is also good. Go
agreement between the approximate and numerical solut
continues up toU0;0.4. Figure 4 shows amplitude and p
sition comparisons for the initial conditionsw050.8 and
U050.5. While the agreement between the positions is go
the agreement between the amplitudes is only fair. The
diation loss terms in the approximate equations were deri
under the assumption thatU was a constant. It is clear that a
U0 increases this assumption becomes less valid. It can
seen from Fig. 4~a! that the amplitude oscillations as give
by the approximate equations have an anharmonic com

,

FIG. 3. Pulse evolution for initial condition~3! with w050.9
andU050.2. Full numerical solution, —; solution of approxima
equations, – – – .~a! Amplitudea of ux and~b! positionj of pulse
minus position of pulse with velocityU0.
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nent. This is due to a mismatch between the periods ofJ1
andw in the integral term of the radiation damping terms i
the approximate equations. For largex, J1(x) has period
2p;6.283 . . . @14#. For U50 exact solution~17! has pe-
riod p2/A3'5.698, so thatJ1 and w have nearly the same
period. However, asU0 increases it can be seen from exa
solution ~17! that the period ofw becomes shorter than the
period of J1. This suggests that to correct the anharmon
behavior the argument ofJ1 should be adjusted to make the
periods of J1 and w similar for large t. Upon doing this
approximate equations~37! and ~38! become

2p2

3w

d2w

dt2
2

p2

3w2 S dw

dt D
2

14
U2

w2
2

4

w2
14

52
2p2

3wt

dw

dt
1

2p2

3Awt
E

0

t

3J1„A11~U0 /w0!2 ~ t2t!…
w8~t!

Atw~t!
dt ~39!

and

FIG. 4. Pulse evolution for initial condition~3! with w050.8
andU050.5. Full numerical solution, —; solution of approximate
equations, – – – .~a! Amplitudea of ux and~b! positionj of pulse
minus position of pulse with velocityU0.
t

c

d

dt S U

wD5
p2U

12

dw

dt F 1

wt

dw

dt
2

1

Awt

3E
0

t

J1„A11~U0 /w0!2 ~ t2t!…
w8~t!

Atw~t!
dtG .

~40!

Since the radiation loss terms were derived under the
sumption thatU050, these equations are as justified as E
~37! and ~38! for U0Þ0.

Figure 5 shows comparisons between the full numer
solution of the sine-Gordon equation and the solution of f
quency adjusted equations~39! and~40! for the amplitudea
of ux . It can be seen that the anharmonic component of
approximate amplitude oscillation has now disappeared. F
ure 5~a! shows the comparison for the initial parameter v
uesw050.8 andU050.5, as for Fig. 4~a!. The comparison
between the numerical and approximate solutions is now
sonable, with the damping of the approximate solution be
slightly stronger than that of the numerical solution and
period of the approximate solution being somewhat shor
Figure 5~b! shows the same comparison for the initial valu
w050.5 andU050.8. The period of the approximate solu
tion is now significantly shorter than the numerical peri

FIG. 5. Pulse evolution using approximate equations~39! and
~40!. Full numerical solution, —; solution of approximate equ
tions, – – – .~a! Amplitude a of ux for w050.8 andU050.5 and
~b! amplitudea of ux for w050.5 andU050.8.
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and the decay significantly stronger. However, the agreem
between the final steady states is good.

V. CONCLUSIONS

The evolution of solitonlike initial conditions to solito
solutions for the sine-Gordon equation has been examine
has been shown that in order to obtain good agreement
full numerical solutions, the effect of the dispersive radiati
shed as the pulse evolves must be included. The effect of
nt

. It
ith

is

dispersive radiation was found by using a suitable solution
the linearized sine-Gordon equation~the Klein-Gordon equa-
tion! in conjunction with the momentum and energy cons
vation equations for the sine-Gordon equation. While the
act inverse scattering solution of the sine-Gordon equa
provides this information in principle, in practice it is diffi
cult to explicitly obtain it. Furthermore, the approxima
method outlined in the present paper can be extende
sine-Gordon-type equations for which there are no inve
scattering solutions. These extensions will be the subjec
further work.
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